关键词:
环境工程学
NO_(x)排放
互信息
互补集合经验模态分解
最大相关最小冗余
天牛须搜索算法
摘要:
NO_(x)体积分数是反映水泥窑炉煅烧过程中氮排放的一个关键环保指标。水泥煅烧过程具有大噪声、大时滞和非线性等复杂特性。为了解决以上难点,提出基于互补集合经验模态分解(Complemementary Ensemble Empirical Mode Decomposition,CEEMD)、熵原理的互信息(Mutual Information,MI)、最大相关最小冗余算法(Max-Relevance and Min-Redundancy,mRMR)和天牛须搜索算法(Beetle Antennae Search,BAS)优化神经网络(Back Propagation Neural Network,BPNN)的混合策略,并用于NO_(x)体积分数预测。首先,CEEMD和中值平均滤波用于处理大噪声。同时,利用熵原理的MI和mRMR进行时滞分析和变量选择,解决大时滞问题。其次,利用BAS提高多层前馈(Back Propagation,BP)神经网络的预测能力,并解决非线性工况问题。最后,将该策略进行工业应用。结果显示,在25900个工业测试样本中,两组的均方根误差(Root Mean Squared Error,RMSE)和平均绝对误差(Mean Absolute Error,MAE)分别仅为0.3024、0.2059和0.2153、0.2013。预测模型结果可指导水泥脱硝操作人员精准喷氨,减少NO_(x)排放并降低氨水用量和氨逃逸情况。