关键词:
Electroencephalogram (EEG)
Texture transformation
Textural feature extraction
Driver fatigue detection
MENTAL FATIGUE
CLASSIFICATION
SYSTEM
SAFETY
TREE
摘要:
Driver fatigue is the one of the main reasons of the traffic accidents. The human brain is a complex structure, whose function can be evaluated with electroencephalogram (EEG). Automated driver fatigue detection utilizing EEG decreases the incidence probability of related traffic accidents. Therefore, devising an appropriate feature extraction technique and selecting a competent classification method can be considered as the crucial part of the effective driver fatigue detection. Therefore, in this study, an EEG-based intelligent system was devised for driver fatigue detection. The proposed framework includes a new feature generation network, which is implemented by using texture descriptors, for fatigue detection. The proposed scheme contains pre-processing, feature generation, informative features selection and classification with shallow classifiers phases. In the pre-processing, discrete cosine transform and fast Fourier transform are used together. Moreover, dynamic center based binary pattern and multi threshold ternary pattern are utilized together to create a new feature generation network. To improve the detection performance, we utilized discrete wavelet transform as a pooling method, in which the functional brain network-based feature describing the relationship between fatigue and brain network organization. In the feature selection phase, a hybrid three layered feature selection method is presented, and benchmark classifiers are used in the classification phase to demonstrate the strength of the proposed method. In the experiments, the proposed framework achieved 97.29% classification accuracy for fatigue detection using EEG signals. This result reveals that the proposed framework can be utilized effectively for driver fatigue detection.