关键词:
γ射线
引力子
引力能量波
共振
康普顿散射
摘要:
本文回顾了传统γ射线产生的核能级理论,回顾了偏转引力理论,分析了引力子在原子核内的传播过程,指出核子发出引力子,引力子在空间以引力能量波传播,以光速传播的引力能量波遇到其它核子与其共振,其共振概率符合正太分布。当引力能量波与核子共振时,引力能量波把能量传播给核子实现能量转移,形成引力。当引力能量波与核子未形成共振时,引力能量波与其核子发生完全弹性碰撞,形成康普顿散射。核子间的平均间距假设和核子的直径相等为1.6 × 10^−15 m,引力子在核子间平均每秒可以发生10^23次碰撞(散射)。本文模拟了引力能量波与核子的多次碰撞过程,说明在引力能量波与核子散射过程中,引力子数量会逐渐减少,引力能量波的频率会逐渐降低,引力能量波与核子共振概率逐渐下降,正常情况下,当引力能量波频率未到γ射线范围内时,引力子数量已经下降为0,因此正常情况下,物质不会发出γ射线。当物质发生核反应(衰变、聚变、裂变)时,物质会分解成极其微小的粒子(引力子),每个引力子(引力能量波的一个波包)携带能量h,并向外以光速辐射,这个以光速在空间传播的引力子动能形成我们感觉到的能量。由于每个核子前一个周期吸收一个引力子到激发态,下一个周期释放一个引力子回到基态,因此核子在引力能量波的两个周期内最多与一个引力子发生共振,再加上核子本身发出的引力子,物质发生核反应时,释放的大量的引力子(能量),在引力子与核子碰撞过程中,核子吸收的引力子(能量)是有限的,由于引力能量波与核子的共振概率逐渐降低,引力子与核子经过多次碰撞散射后,最后几乎不再与核子发生共振,此时只有频率的降低,引力子经过与核子的许多次碰撞后传播到物质粒子外部,形成频率远远低于1.6 × 10^−15 Hz的引力能量波,这就是γ射线,可以说γ射线就是低频的引力能量波,γ粒子就是低能的引力子。This article reviews the nuclear energy level theory produced by traditional gamma rays, reviews the deflection gravity theory, analyzes the propagation process of gravitons in the atomic nucleus, and points out that nucleons emit gravitons, which propagate in space as gravitational energy waves, and the gravity that propagates at the speed of light. When an energy wave encounters other nuclei and resonates with them, its resonance probability conforms to the normal distribution. When gravitational energy waves resonate with nuclei, the gravitational energy waves propagate energy to the nuclei to achieve energy transfer, forming gravity. When the gravitational energy wave does not resonate with the nuclei, the gravitational energy wave and its nuclei have a completely elastic collision, forming Compton scattering. Assuming that the average distance between nucleons is equal to the diameter of the nucleons, which is 1.6 × 10^−15 m, gravitons can collide (scatter) an average of 10^23 times per second between nucleons. This article simulates the multiple collision processes between gravitational energy waves and nucleons, which shows that during the scattering process of gravitational energy waves and nucleons, the nu