关键词:
纤维素
生物油
红外光谱
凝胶渗透色谱
核磁共振
热重分析
摘要:
开发农林废弃物高值化利用路径与“深入推进能源绿色低碳转型”国家重大战略需求高度契合。实验探索农业废弃物玉米秸秆中纤维素组分常压酸(H3PO4)催化多元醇[丙二醇(PG)与二甘醇(DEG)混合液]液化反应路径为研究目标,了解酸催化多元醇作用条件下的木质生物质液化反应机理。采用傅里叶红外光谱(FTIR)、凝胶渗透色谱(GPC)、核磁共振波谱(NMR)及热重分析(TGA)对不同反应时间下纤维素液化所得生物油的化学基团、分子量及其分布、分子结构、热解等进行了分析。FTIR检测表明,不同反应时间所得生物油具有相似FTIR特征;液化初期,纤维素降解生成了较多的烃类、醚类和含羰基化合物;液化后期,纤维素中的糖类降解产物、羟基或烯烃与PG/DEG反应生成了难溶于1,4-二氧六环的有机物。GPC分析表明,随着液化的进行,纤维素分子链发生断裂程度加剧,降解生成低分子量(LMW)物质越来越多,降解反应占主导地位;而当反应时间达到某一值时,其降解产物与PG/DEG发生聚合反应产生越来越多的大分子量物质,使生物油的分子量不再降低,即聚合反应占主导地位。^(1)H-和^(13)C-NMR表明,纤维素在液化作用下发生降解使得分子链断裂,仍保留了部分葡萄糖单元结构;随着液化反应的进行,这些结构单元再次发生转化产生LMW化合物;反应继续进行时,这些产物之间或与PG/DEG之间可进行聚合反应,形成结构趋于一致、性质逐渐稳定的新物质。TGA分析结果:生物油中含有70%~85%碳数小于25和5%~10%碳数高于25的化合物,最终残炭率随着反应时间的延长先降低再升高。实验通过研究纤维素在多元醇液化过程中的结构变化,揭示其液化的反应历程,为探索秸秆全组分的液化机理奠定理论基础。