关键词:
等离子体催化
CO_(2)加氢
绿色甲醇
动力学计算
发射光谱
摘要:
CO_(2)耦合绿氢制甲醇可同时实现CO_(2)规模转化利用和绿氢储存,甲醇可作为绿色低碳燃料或工业平台产品大规模应用,对推动碳捕集、利用与封存(CCUS)技术进一步发展具有重要意义。非热等离子体(NTP)能在温和条件下活化CO_(2)进行加氢反应,耦合催化剂后可实现甲醇等特定产物定向调控,但其反应机理亟待明确。基于此,结合介质阻挡放电(DBD)实验与连续脉冲等离子体反应动力学模拟,对NTP强化Cu/γ-Al_(2)O_(3)催化CO_(2)加氢制甲醇反应机理和过程耦合规律进行研究。实验证明,NTP与10%Cu/γ-Al_(2)O_(3)耦合可在80℃、0.1 MPa下实现18.74%CO_(2)转化率和36.28%CH_(3)OH选择性。放电参数在线监测和原位发射光谱(OES)测量结果表明,耦合Cu/γ-Al_(2)O_(3)后局部放电增强,使得平均电子能量和密度增加促进CO、H生成并参与表面反应而消耗,导致光谱强度减弱。进一步由敏感性和ROP分析发现,NTP中H、CO等活性物质通过CO_(2)(S)+H→COOH(S)、CO+H(S)→HCO(S)、CO(S)+H→HCO(S)、CH_(3)O(S)+H→CH_(3)OH(S)等E-R反应替代对应高能垒L-H反应促进甲醇高效生成。分析反应路径得出,甲酸盐(HCOO*)路径是Cu/γ-Al_(2)O_(3)表面甲醇生成主要路径,其中反应CH_(3)O(S)+H(S)→CH_(3)OH(S)+Cu(S)是最大限速步,RWGS+CO氢化路径中通过CO_(2)(S)→COOH(S)→CO(S)路线生成CO(S)并快速脱附为降低CH_(3)OH选择性重要因素。不确定性分析表明,虽然提高CO_(2)吸附速率可有效提高其转化率,但当H(S)不足时反而会增加CO选择性,最优CO_(2)和H_(2)吸附速率比为γ(H_(2))/γ(CO_(2))=7~8;提高CO(S)吸附稳定性并增强H_(2)电子碰撞解离以促进H生成,可提高CO(S)→HCO(S)、CH_(3)O(S)→CH_(3)OH(S)等速率,协同实现27.4%、51%的CO_(2)转化率和CH_(3)OH选择性。