关键词:
非共振式
压电直线电机
柔性铰链
混联六自由度平台
多工作模式
摘要:
在光波导器件连接和封装过程中,需要解决的关键问题是如何提高精度,实现连接封装过程的自动化,这对大行程、多自由度精密定位工作台提出了需求。已有装备采用电磁电机经丝杠驱动六自由度工作台运动,实现阵列光纤与光波导器件的对准。由于传动链较长,致使系统刚度低,响应慢,系统精度难以进一步提升,只能依靠其它驱动方式进行更高精度的补偿,这使系统对作动器的控制难度增加。另外,工作台自身的导向精度也是限制对准精度进一步提高的关键因素。本文提出了具备多种工作模式、大行程、快响应和高精度特点的压电电机,作为串并混联六自由度精度定位平台的作动器,进而构建基于压电作动器直接驱动的六自由度高精密定位平台,其具体设计目标是具备连续大行程工作范围和高精度定位能力,平动定位精度为1μm,转动定位精度为0.0005°。首先,设计了柔性正交式、柔性杠杆式和柔性菱形式三种不同结构的非共振式压电作动机构,提出了连续驱动和步进驱动两种作动模式,分别满足较远距离高速运动和临近目标精确定位要求。另一方面,面向柔性铰链的结构参数展开了参数化设计研究,提出了新的结构参数ε和柔度参数λ,详细探讨了参数ε对柔性铰链结构柔度的影响机制,以及参数λ-ε的之间的影响关系。在此基础上面向三种不同结构的压电作动机构展开了不同的优化设计方法研究,并采用多种方法验证了其优化设计的有效性,最后对三种压电作动机构进行了实验研究。实验结果证明,优化后的三种柔性压电直线作动机构有效的提升了步进作动的分辨率,具有高精度的运动分辨率和稳定的宏观连续运动能力,能够直接应用到多自由度精密定位平台中。其次,在对比了串联机构和并联机构的优缺点之后,采用2T1R串联平台+2R1T并联平台的构型,设计了串联与并联混合构型的六自由度精密定位平台;其中3-DOF并联平台采用3条斜面牵引并联支路对称布置结构方案,设计了大行程圆柱柔性铰链,提出了基于模糊优化算法的圆柱柔性铰链结构参数优化设计方法,构建了基于大行程圆柱柔性铰链的3-DOF并联平台刚度模型,分析了大行程圆柱柔性铰链在3-DOF并联平台中的有效性和可靠性。另一方面,构建了6-DOF混联精密定位平台的完整运动学与动力学模型,借助于齐次坐标变换方法给出了6-DOF混联精密定位平台的运动学位姿正反解;利用拉格朗日动力学模型给出了动力学广义驱动力的求解模型;最后采用多刚体动力学仿真软件ADAMS对所构建的6-DOF混联精密定位平台开展了仿真研究,仿真结果表明所设计的6-DOF混联精密定位平台具有较好的运动学能力,在给定外力(力矩)条件下可以实现大行程工作空间范围内的宏观运动与定位,满足6个自由度的运动设计要求。最后,搭建了面向6-DOF混联精密定位平台的实验系统,设计了实验测量方法,开展了步进作动模式实验研究和连续作动模式实验研究。实验结果表明,在步进作动实验中,X轴平动的步进分辨率为1.2μm,Y轴平动的步进分辨率为1.4μm,Z轴平动的步进分辨率为1.0μm;X轴转动的步进分辨率为8.6μrad,Y轴和Y轴转动的步进分辨率分别为11μrad和10μrad,Z轴转动的步进分辨率为3μrad;在连续作动实验中,X轴平动的宏观运动速度为1.82mm/s,Y轴平动的宏观运动速度为1.89mm/s,Z轴平动的宏观运动速度为312μm/s;X轴转动的宏观运动角速度为29000μrad/s,Y轴和Y轴转动的宏观运动角速度分别为29400μrad/s和28000μrad/s,Z轴转动的宏观运动角速度为26400μrad/s。各轴的平动定位分辨率和转动定位分辨率已基本达到预期设计目标;各轴的平动和转动的工作行程区间均已实现预期设计目标。另一方面,对6-DOF混联精密定位平台进行了运动误差影响因素分析,给出了各轴的运动误差棒分析图,对于进一步提高所设计的6-DOF混联精密定位平台的定位精度和运动性能具有指导意义。本研究课题所设计的6-DOF混联精密定位平台,采用非共振式压电直线电机直接作为各轴运动的作动机构,显著缩短了传动链,简化了系统控制方式,也有利于提高定位平台的作动响应速度;利用非共振式压电直线电机的步进作动模式和连续作动模式,即可实现6-DOF混联精密定位平台高精度微动与大行程宏动,具有广阔的应用前景。