关键词:
Forecasting
摘要:
Due to the uncertainty of geological conditions during the tunneling process, advanced prediction of TBM tunneling parameters is significant for evaluating operational safety and efficiency, especially for real-time prediction of key tunneling parameters during the steady phase of TBM operation. At present, although there are studies on constructing predictive models based on machine learning algorithms, multiparameter prediction consistent with the actual tunneling process remains challenging due to the complexity of the TBM tunneling process and the numerous tunneling parameters. Therefore, this paper proposes a real-time multiple tunneling parameters prediction method of TBM steady phase based on dual recurrent neural networks. Firstly, the irregular multidimensional time series of tunneling parameters are analyzed and processed, which are divided into an idle-push phase, a rising phase, and a steady phase; secondly, the parameters of rising phase are analyzed using a recurrent neural network, and the parameters relevant for constructing a real-time prediction model are screened; then, based on the screened parameters, the Bayesian-optimized gated recurrent unit (GRU, a kind of recursive neural network) is proposed to construct a real-time prediction model for the four key tunneling parameters during the steady phase. Finally, the effectiveness and practicality of the proposed method are demonstrated by verification on real TBM tunnel datasets and comparing it with the models constructed by six commonly used machine learning algorithms. The results of this paper show that the designed prediction method is able to achieve a good combination of performance in terms of accuracy and computational time-consumption, with an average prediction accuracy of 91.1% for the four parameters for different rock grades of geology, the multiparameter prediction time for 100 samples is only 11 ms. In addition, three current similar studies using deep learning methods were compared