关键词:
故障诊断
轴箱轴承
多域融合
轻量化
尺度感知调制
摘要:
针对当前Transformer网络模型运算效率偏低,且难以用于复杂工况条件下高速列车轴箱轴承故障诊断的问题,提出了一种基于时频多域融合与轻量化结构的尺度感知调制Swin Transformer(SMST)模型的轴箱轴承故障诊断方法。首先,采用格拉姆角场法、双谱法与Chirplet变换法,将轴承振动信号转化为时域、频域与时频域内的二维图像,基于多域特征融合思想集成为新的特征图像;然后,设计了一种新的轻量化结构SMST模块,在其内部实现了卷积运算与Transformer自注意力运算的进一步融合;最后,在层次化模型框架中引入特征金字塔模块(FPB),弥补不同层输出特征的不一致性,实现了上下文信息的特征深度融合及复杂工况条件下轴箱轴承故障诊断。实验结果表明:相比格拉姆角场法、双谱法、Chirplet变换法、短时傅里叶变换法、连续小波变换法等单一领域图像生成方法,时频多域融合方法生成的图像特征信息表征能力更好;所提网络模型在1010、760、505 r/min这3种转速变工况任务中的轴箱轴承故障识别准确率分别为99.88%、99.92%与99.96%;对比ResNets、GoogleNet、ViT、Swin Transformer和SMT这5种模型,所提方法的故障识别准确率更高,模型轻量化程度更好。所提方法可为实际工况中列车轴箱轴承故障诊断提供参考。