关键词:
Endothelial cells
Raman spectroscopy
Heart
Aorta
Brain
Liver
Kidney
DILATED CARDIOMYOPATHY
MOUSE MODEL
HEART-FAILURE
SINGLE-CELL
SPECTROSCOPY
DYSFUNCTION
ACTIVATION
PATTERN
LIVER
LINES
摘要:
Raman spectroscopy is successfully becoming an analytical tool used to characterize alterations in the biochemical composition of cells. In this work, we identify the features of Raman spectra of murine primary endothelial cells (EC) isolated from lungs, heart, liver, brain, kidney and aorta of normal mice, as well as from heart, lung and liver in a murine model of heart failure (HF) in Tgaq*44 mice. Primary cells were measured in suspension immediately after their isolation. Raman images showed that isolated primary EC were elliptical or circular, and did not show organ-specific spectral features for any of the studied organ, i.e. lungs, heart, liver, brain, kidney and aorta. Principal Component Analysis pairwise analysis of primary endothelial cells from FVB mice and Tgaq*44 mice revealed an increased protein content in EC isolated from the heart and increased lipid content in EC isolated from the lung in Tgaq*44 mice. No significant differences were found in the EC isolated from the liver using the same chemometric procedure. To our knowledge, this is the first report in which Raman spectroscopy has been used to characterize the biochemical phenotype of primary murine EC with developing HF. This pilot study shows that Raman-based analysis of freshly isolated primary EC did not revealed organ-specific features, however disease-associated changes were found in the coronary and pulmonary EC in the early stage of heart failure in Tgaq*44 mice.