关键词:
La_(1-x)Ce_(x)MnO_(3)-Ba/Al_(2)O_(3)催化剂
H_(2)选择性催化还原NO
NH_(3)产物选择性
NO转化率
晶相结构
还原特性
NO_(x)吸附-脱附
摘要:
为了实现碳中和目标,降低内燃机碳排放,稀薄燃烧技术成为了当前重要的研究方向.该技术不仅能提高发动机燃油热效率,还能有效降低CO_(2)排放.但是稀薄燃烧往往会伴随着大量氮氧化物的产生,为了解决该问题,采用LNT-SCR耦合的NO_(x)净化技术,此时LNT的作用是将排气中部分NO_(x)转化为NH_(3),为下游的SCR提供还原剂.基于此,制备了LNT催化剂,研究催化剂对NO选择性生成NH_(3)的影响.采用溶胶-凝胶法制备了La_(1-x)Ce_(x)MnO_(3)系列钙钛矿氧化物,并通过分步浸渍法得到了La_(1-x)Ce_(x)MnO_(3)-Ba/Al_(2)O_(3)负载型催化剂.利用XRD、H_(2)-TPR、NO-TPD等表征手段研究了钙钛矿氧化物的晶相结构,以及负载型催化剂的还原特性、NO_(x)吸附-脱附性能等物化性质,并且通过H_(2)选择性催化还原NO实验探究了催化剂掺杂Ce对NO转化成NH_(3)的影响.结果表明,Ce掺杂催化剂具有良好的NH_(3)产物选择性,并且显著提高了NO转化率.温度是NO转化和NH_(3)产物选择性生成的决定性因素,而H_(2)和NO体积比是NO转化和NH_(3)产物选择性生成的关键性因素.其中,La_(0.95)Ce_(0.05)MnO_(3)-Ba/Al_(2)O_(3)在低温下催化活性表现最佳,在350℃、H_(2)和NO体积比为5.0时NH_(3)产物选择性为65%,NO转化率为100%.此外,所制备的La_(1-x)Ce_(x)MnO_(3)都形成了钙钛矿型结构,而且Ce掺杂催化剂的大部分Ce离子可以进入到LaMnO_(3)结构中.在催化剂适量掺杂Ce后,H_(2)消耗总面积增大、还原峰的峰值温度降低,表明掺杂Ce改善了催化剂的还原特性;同时NO吸附和脱附面积增大,表明Ce掺杂改变了催化剂的NO_(x)吸附-脱附性能.