关键词:
总有机碳
紫外-可见吸收光谱
蚁群-偏最小二乘算法
粒子群-最小二乘支持向量机
摘要:
总有机碳(TOC)指悬浮或溶解于水中有机物的含碳总量,是以单位体积水体中含碳的质量来表示水中有机物的浓度,通过总有机碳可以更全面反映水中有机污染物的总量。总有机碳的监测能够推动我国实现“碳达峰”和“碳中和”的目标,也对我国海洋地球碳循环的研究具有重要的意义。目前,国标法测量水质TOC主要采用高温催化氧化法和湿法氧化法,这两种方法虽测量准确、可解释性强,但都具有测试方法复杂、测量时间长、易产生二次污染、人力物力消耗巨大等缺点,且仅能在实验室内完成,无法进行TOC的原位在线测量。因此发展水质TOC快速、实时、在线监测技术具有重要意义。为此,建立了TOC标准溶液浓度基于紫外吸收光谱的单波长检测模型,针对物质种类更为复杂的真实水样分别使用ACO-PLS和SPA算法筛选特征波长,对比S-G平滑处理、最小最大归一化、标准正态变换(SNV)、消除常数偏移量、导数校正等多种光谱预处理方法的效果,经过粒子群算法优化的最小二乘支持向量机算法(PSO-LSSVM)建立快速检测模型。结果表明,选取不同数量特征波长,经SNV算法预处理后的建模效果普遍优于其他预处理方法;选用不同预处理算法,最佳特征波长数量普遍为50个,过多或过少的波长数量会使建模精度降低;最佳建模参数为选用SNV预处理方法,经ACO-PLS算法筛选50个特征波长组合并利用PSO-LSSVM算法建模,最优模型结果训练集Rc达到0.984 3, RMSEC为0.457 4,验证集Rp为0.974 5, RMSEP为0.481 1。将最优光谱检测模型应用于新采集水样,预测结果较为准确,具有一定鲁棒性。表明ACO-PLS算法可以有效选取特征波长,结合PSO-LSSVM算法可以实现利用紫外-可见吸收光谱对水体中TOC的测量,为水体TOC含量快速检测提供一种快速、无污染的测量方案,给相应传感器的研发提供了科学支持。