关键词:
乳腺影像报告和数据系统
Logistic回归分析
乳腺肿块
鉴别诊断模型
摘要:
目的基于超声乳腺影像报告和数据系统(BI-RADS)与Logistic回归分析构建良恶性乳腺肿块鉴别诊断模型,并分析其应用价值。方法选取156例和67例乳腺肿块患者,分别作为模型组和验证组。依据病理结果将156例模型组患者分为良性组(n=87)和恶性组(n=69),记录两组患者的临床特征和BI-RADS超声影像特征,乳腺恶性肿块的影响因素采用Logistic回归分析。根据影响因素构建良恶性乳腺肿块鉴别诊断模型,绘制受试者工作特征(ROC)曲线,计算曲线下面积(AUC),分析该模型的诊断效能。结果单因素分析结果显示,良性组和恶性组患者年龄、肿块最大直径、淋巴结肿大情况、BI-RADS分类、超声弹性评分、方位、形态、边缘、内部回声、后方回声、血供情况、结构扭曲情况和微钙化情况比较,差异均有统计学意义(P﹤0.01)。多因素Logistic回归分析结果显示,年龄≥40岁、肿块最大直径≥3 cm、方位不平行、形态不规则、边缘成角、边缘毛刺、内部回声不均匀和微钙化均是乳腺恶性肿块的独立危险因素(P﹤0.05)。根据上述8个影响因素构建良恶性乳腺肿块的鉴别诊断模型,Hosmer-Lemeshow拟合优度检验结果显示,χ^(2)=12.512,P=0.130;该模型诊断乳腺恶性肿块的AUC为0.896(95%CI:0.844~0.948),灵敏度为85.50%,特异度为85.10%,约登指数为0.706,表明该模型拟合优度良好,具有较好的诊断效能。将验证组67例患者代入诊断模型中,该模型诊断乳腺恶性肿块的AUC为0.986(95%CI:0.962~1.000),灵敏度为93.30%,特异度为100%,约登指数为0.933,说明该模型的诊断效能较好。结论基于超声BI-RADS与Logistic回归分析构建的良恶性乳腺肿块鉴别诊断模型具有较高的临床应用价值,可作为辅助手段对乳腺癌进行筛查。