关键词:
Design for reliability
Automotive
FMEA
Monte Carlo method
Accelerated life testing
OPTIMIZATION
ALLOCATION
摘要:
Design and production of highly reliable and safer automotive systems with longer life has been a challenge. The pressure is outcome of high competitive market and recent safety issues of reputable car manufacturers. In this paper, an integrated methodology is proposed based on design for reliability of automotive systems and considering its reliability/safety critical sub-systems. In the proposed approach, the FMEA results are used in the process of failure mode/mechanism identification. The basic failure data, mostly obtained from generic databases, are adjusted by multiplicative corrective factors to account for the design and environment impacts on system failure characteristics. The system is modeled by reliability block diagram method, simulated by Monte Carlo technique. The results of FMEA and reliability evaluation are used for system improvement by reducing the components' failure rates and potential change of system configuration. The components' reliability is improved by increasing the quality of components by utilization of high quality materials and modern manufacturing techniques. Modification of system configuration, e.g., adding redundancy, is an alternative for system reliability improvement in some cases. The results show that the friction lining component is the most critical elements in terms of reliability importance. After completion of this phase, an assessment is done for system reliability by comparing the system reliability targets. As a case study, dry friction clutch is studied for assessment of the proposed method. In this study, the life test requirement is researched for each component using a reliability testing techniques. Finally, the uncertainties are computed associated with the failure data and final reliability estimations and the results were presented with a confidence interval.