关键词:
铀浓度预测
经验模态分解
卷积神经网络
长短期记忆
傅里叶变换
摘要:
文章通过集成经验模态分解(Empirical Mode Decomposition,EMD)、卷积神经网络(Convolutional Neural Networks,CNN)、长短期记忆网络(Long Short-Term Memory,LSTM)、傅里叶变换,提出了一种新型地浸单元浸出液铀浓度预测方法。该方法将浸出液铀浓度监测值时间序列使用EMD进行分解,分解为趋势项、周期项和随机项。通过构建CNN+LSTM网络,并结合傅里叶变换和多项式拟合对铀浓度趋势项、周期项和随机项进行预测,3者预测之和作为铀浓度预测结果。实证结果表明:EMD能够有效分解铀浓度时间序列,模型拟合度比未进行EMD分解的模型提升超50%;基于EMD、CNN+LSTM和傅里叶变换的集成方法预测精度良好,预测的平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)为0.348,与LSTM、反向传播(Back Propagation,BP)和门控循环网络(Gate Recurrent Unit,GRU)等模型相比最高提升超80%。文章提出的集成方法能够准确预测浸采单元铀浓度变化,解决了原有方法和模型无法对非线性、非平稳铀浓度序列进行准确预测的问题,从而为地浸矿山生产规划提供技术支持,并有助于提升中国铀矿山的数字化、信息化程度。