关键词:
城市交通
集成学习
居民属性数据
特征向量
出行方式预测模型
LightGBM
摘要:
传统的效用理论模型以整体效用最大化为目标,忽略了影响居民出行方式选择肢间可能存在相关性以及部分效用相互补偿性。基于集成学习的居民出行方式预测模型可以有效表达出行效用的个体偏好、差异性和补偿性,解决了不同出行特征影响因素对于不同人群有不同效用表征问题。本文依托大样本居民属性数据,针对不同个体对不同影响因素的感知差异,结合居民出行调查的个人属性、出行属性及环境属性等相关影响因素进行综合分析,构建个体级居民的出行特征向量;研究构建基于集成学习方法的居民出行方式预测模型;以广州市为例进行实证分析,通过准确率、精确率、召回率和F1值这4个指标,对模型预测结果进行综合评价;针对部分出行属性相似导致细分的出行方式判别精度不高,按照大类方式、慢行交通、公共交通、个体机动化交通这4个类别构建层次化LightGBM(Light Gradient Boosting Machine)模型,并对GBDT(Gradient Boosting Decision Tree)、Random Forest、LightGBM、层次化LightGBM这4个模型预测结果进行综合对比。分析结果表明:LightGBM模型预测慢行交通、公共交通、个体机动化等三大类出行方式的平均准确率约为87%,其中慢行交通方式预测准确率最高,为92%;预测精细化出行方式平均准确率约为78%,其中步行方式预测准确率最高,为89%;LightGBM模型适用于城市级的居民出行方式预测,是一种有效的居民出行方式选择的预测方法。