关键词:
Energy
Exergy
Economic
Environmental
TRNSYS
MATLAB
EXERGY ANALYSES
ENERGY-STORAGE
POROUS-MEDIA
DRYER
SIMULATION
HEAT
SYSTEM
TIMBER
摘要:
This research conducts a novel and complete 4E assessments and introduces an innovative method for examining solar wood drying systems. The software TRNSYS and MATLAB programming are combined to simulate and create a numerical program. This novel combination allows for a thorough examination that goes beyond conventional assessments of wood drying. The aim is to evaluate the effectiveness of a solar wood dryer using two different collectors, a double-pass and a photovoltaic thermal collectors, in terms of four key aspects: energy, exergy, economic, and environmental. Further, the drying process was investigated under various climates in three African cities (Errachidia, Dakar, and Nouakchott). The moisture content of wood was reduced from 74% to 12% in the three cities. Elaborate simulations were performed and the results were confirmed by experimental validation, using methods including Mean Absolute Error, Mean Relative Error, and Root Mean Square Error. The primary findings of this study are the following: In the double-pass dryer, the drying time required in Errachidia, Dakar, and Nouakchott was 139h, 189h, and 170h, respectively. Whereas in the photovoltaic thermal dryer, it needed 192h in Errachidia, 210h in Dakar, and 189h in Nouakchott. Further, using photovoltaic thermal, the dryer exhibited superior exergy efficiency compared to the use of double pass collector. Photovoltaic thermal collector reduces yearly CO2 2 emissions by an average of 54.87, 66.2, and 44.11 tonnesCO2 2 in Errachidia, Dakar, and Nouakchott, respectively. In contrast, double pass collector reduces CO2 2 emissions by an average of 38.49, 57.9, and 38.56 tonnesCO2 2 in Errachidia, Dakar, and Nouakchott, respectively, throughout the year. Further, the solar dryer, using double pass collector, has a shorter payback time than using photovoltaic thermal collector, indicating a quicker economic return.