关键词:
葵花籽皮
近红外光谱技术
改良偏最小二乘法
反向传播神经网络
预测模型
摘要:
本研究旨在利用近红外光谱(NIRS)技术结合不同化学计量学方法建立葵花籽皮营养成分含量的预测模型。采集101份葵花籽皮样品,测定水分、粗蛋白质(CP)、有机物(OM)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)、酸性洗涤木质素(ADL)、粗灰分(Ash)、钾(K)、钙(Ca)、磷(P)、镁(Mg)、铁(Fe)、锰(Mn)、锌(Zn)和铜(Cu)含量。通过主成分分析(PCA)剔除异常值后,利用KS算法将剩余样品分为定标集和验证集,利用NIRS技术结合改良偏最小二乘法(MPLS)和反向传播神经网络(BPNN)分别建立葵花籽皮营养成分含量预测模型。结果表明:1)葵花籽皮中水分、NDF、ADF、Ash、Mg、Fe和Mn含量的预测决定系数(RSQ)为0.88~0.99,验证相对分析误差(RPD)为2.82~8.36,利用MPLS和BPNN模型定标结果较好,且预测准确性较好,能够用于实际测量。2)葵花籽皮中K和Zn含量的MPLS模型的PRD分别为2.75和2.44,而BPNN模型的PRD分别为1.76和1.69,K和Zn含量可利用MPLS模型进行实际预测。3)葵花籽皮中CP、Ca和P含量的BPNN模型的RSQ分别为0.9、0.89和0.83,而MPLS模型的RSQ分别为0.75、0.62和0.71,CP、Ca和P含量可通过BPNN模型进行实际预测。4)葵花籽皮中ADL和Cu含量的MPLS和BPNN模型的RSQ为0.30~0.68,RPD为1.03~1.79,预测结果不可用于实际预测。综上所述,利用NIRS技术结合MPLS和BPNN建立的预测模型能够准确预测葵花籽皮中水分、CP、NDF、ADF、Ash、K、Ca、P、Mg、Fe、Mn和Zn含量。