关键词:
故障诊断
主成分分析
黏菌算法
混合核支持向量机
摘要:
为解决变压器故障诊断精度较低的问题,提出了一种多策略改进黏菌算法(ISMA)阶段优化混合核支持向量机(HSVM)的变压器故障诊断新方法。首先,利用主成分分析(PCA)来消除变量之间的信息冗余并降低数据集维度。其次,引入黏菌算法(SMA),并结合Logistic混沌映射、二次插值、自适应权重多策略改进SMA,以提高SMA算法收敛速度和局部搜索能力;然后,与原始SMA、WHO和GWO算法进行寻优测试,对比验证改进后SMA算法的优越性;最后,使用改进SMA算法分阶段对混合核支持向量机参数寻优,构建ISMA-HSVM变压器故障诊断模型。将降维后的特征数据输入HSVM模型与BPPN、ELM和SVM进行比较,HSVM模型的诊断准确性分别提高了5.55%、8.89%、5.55%。使用ISMA优化HSVM模型参数,与WHO、GWO、SMA算法优化效果比较,结果准确性提高了13.33%、12.22%、5.55%。其中,ISMA-HSVM模型的诊断精度为93.33%。实验结果表明,所提模型有效提升故障诊断分类性能,且具有较高的故障诊断精度。