关键词:
铣削稳定性
工艺参数优化
多目标优化模型
刀具悬伸量
引导聚集算法
NSGA-Ⅱ遗传算法
摘要:
数控机床铣削过程中出现的颤振失稳是影响数控机床加工效率和加工质量的关键因素。铣削稳定性与工艺参数、工艺系统动力学特性密切相关,而工艺系统动力学特性又随加工位置、刀具悬伸量的变化或刀具的更换而变化。因此,针对多因素影响下的铣削稳定性预测和无颤振工艺参数选择问题,本文以数控机床各向移动部件位置、刀具直径、刀具悬伸量和切削参数为变量,提出一种基于引导聚集算法(Bagging)与带精英策略的快速非支配排序遗传算法(NSGA-Ⅱ)的切削稳定性预测与工艺参数优化方法。该方法首先采用正交实验设计离散数控机床的工作空间,在每个加工位置对不同悬伸量下的刀具进行锤击实验,由此得到各把铣刀对应的刀尖点频率响应函数;然后,在不同工艺参数方案下进行铣削稳定性理论预测,进而引入Bagging算法建立以各向运动部件位置(x,y,z)、刀具直径d、刀具悬伸量h、主轴转速n、切削宽度a_(e)、每齿进给量f_(z)为输入的极限切削深度a_(plim)预测模型;在此基础上,采用该Bagging模型作为铣削稳定性约束,以加工位置和工艺参数(x,y,z,d,h,n,a_(p),ae,f_(z))为优化变量,建立最大材料切除率和刀具寿命的多目标优化模型,采用NSGA-Ⅱ算法求解该模型得到Pareto最优解集,并结合熵权法和优劣解距离法(TOPSIS)选出Pareto解集中的最佳解。以一台三轴立式加工中心展开实例分析,所建极限切削深度Bagging模型的预测误差为2.99%,且铣削加工实验表明获取的(x,y,z,d,h,n,a_(p),ae,f_(z))最优配置可实现稳定铣削,验证所提方法的可行性和有效性。