关键词:
Eyelid and eyelash occlusions
ROI
local intensity variations
MB-FET
ALGORITHM
摘要:
One of the crucial and inherent issues in a practical iris recognition system is the occlusion that happens due to eyelids and eyelashes. This occlusion increases the complexity and degrades the performance of matching and feature extraction processes. Generally, two types of approaches have been proposed to solve this issue. The first approach requires generating an iris mask that indicates which part of the iris is useful and which others are occluded. However, in the second approach, a fixed region of interest (ROI) within the iris area is selected to avoid the regions of occlusion. In this paper, we experimentally study both approaches but due to the latter characteristic, which is its ability to simplify the matching and feature extraction processes, it has been adopted in our techniques used, specifically for iris segmentation, iris normalization, and feature extraction. Accordingly, for matching and feature extraction, the lower side of the pupillary region (i.e. the innermost 25% of the lower half of the iris ring) is found to be the best ROI. This small area of iris is almost free of eyelids and eyelashes and it contains abundant texture information. Interestingly, this selection of small area helps us in proposing a simple yet efficient technique for feature extraction, called mean-based feature extraction technique (MB-FET). This technique is based on analyzing the local intensity variations. The proposed technique achieves a lower processing burden than other traditional methods such as Fourier or wavelet decompositions (e.g. Gabor wavelet). In most traditional techniques, many parameters (e.g. five parameters for 2D-Gabor filter) must be optimally determined in advance to achieve an accurate feature extraction process. Unfortunately, these parameters may not match various variations in image capturing conditions (e.g. variations in illumination due to change in image capturing distance). Moreover, the basic functions of the traditional methods are fixed