关键词:
K-means聚类算法
天鹰优化器(AO)
加权最大最小距离积法
摘要:
对空气质量数据进行聚类,传统聚类方法因受初始点的影响,存在随机性高、聚类精度低以及多个中心点出现在同一簇中的问题,为此提出了一种反向学习差分进化天鹰优化器(RLDEAO)优化的K-means互补迭代空气质量数据聚类方法。天鹰优化器(aquila optimizer,AO)算法具有很强的探索能力,不易受初始点的影响且更易实现,但易陷入局部最优。基于自适应逐维小孔成像反向学习策略、停滞扰动结合莱维飞行策略以及生物进化策略等改进思想,对AO算法进行了改进,有效提高了搜索性能,避免了局部最优;在求取聚类中心点时,设计了一种加权最大最小距离积法(weighted maximum minimum distance product,WMMP),能反映各特征的重要性,对改进聚类结果作用良好;将RLDEAO与WMMP相结合优化K-means互补迭代,提高了搜索速率和搜索精度。通过在多个数据集上的聚类测试,发现RLDEAO-KMC算法的收敛精度和聚类效果较AO-KMC、FCM、KMC、KMC++算法更优。可知,RLDEAO-KMC算法可以更高效地对空气质量数据进行聚类分析,有针对性地做出预测和应对。