关键词:
养殖工船
水质参数
长短时记忆网络
麻雀搜索算法
溶解氧预测
摘要:
为了准确预测水质参数中的溶氧量,采用长短时记忆网络(Long Short-Term Memory,LSTM)模型,提出一种增强型麻雀搜索算法(Enhance Sparrow Search Algorithm,ESSA)以改进预测率的精确性。该算法引入了Circle混沌映射进行种群初始化,并结合正弦余弦算法和Levy飞行策略分别对侦察者、跟踪者的位置进行更新,以促使麻雀个体能够快速跳出局部最优解。首先将ESSA与多种其他算法进行多形态基准函数对比测试,结果表明该算法在多个基准函数上展现出出色的性能和鲁棒性;随后将其应用于LSTM模型参数寻优,并与其他优化算法进行比较,结果显示基于ESSALSTM模型的预测率达到99.071%,相较于基本麻雀搜索算法(Sparrow Search Algorithm,SSA)、灰狼优化算法(Grey Wolf Optimizer,GWO)、海洋捕食算法(Marine Predators Algorithm,MPA)、鲸鱼算法(Whale Optimization Algorithm,WOA)分别提升了2.142%、6.653%、6.682%、7.714%。研究表明,使用ESSA显著提高了溶解氧预测率,并有效减少了参数设置的盲目性和时间成本。