关键词:
Detection
Edge devices
Interference
Jamming
Machine learning
Security
WSNs and ZigBee
INTRUSION DETECTION SYSTEMS
ALGORITHMS
ATTACKS
摘要:
Despite Wireless Sensor Networks (WSNs) significantly developing over the past decade, these networks, like most wireless networks, remain susceptible to malicious interference and spectrum coexistence. Other vulnerabilities arise as WSN applications adopt open standards and typically resource and energy-constrained commercial-off-the-shelf equipment. Deployments include safety-critical applications such as the internet of things, medical, aerospace and space and deep-sea exploration. To manage safety and privacy requirements across such a diverse wireless landscape, security on wireless edge devices needs improvement while maintaining low complexity. This paper improves wireless edge device security by developing a novel intelligent interference diagnostic framework. Received in-phase (I) and quadrature-phase (Q) samples are exclusively utilized to detect modern, subtle and traditional crude jamming attacks. This I/Q sample utilization inherently enables decentralized decision-making, where the low-order features were extracted in a previous study focused on classifying typical 2.4-2.5 GHz wireless signals. The associated optimal intelligent models are leveraged as the foundation for this paper's work. Initially, Matlab Monte Carlo simulations investigate the ideal case, which incorporates no hardware limitations, identifies the required data type of signal interactions and motivates a hardware investigation. Software-defined radios (SDRs) collect the required live over-the air I/Q data and transmit matched signal (ZigBee) and continuous-wave interference in developed ZigBee wireless testbeds. Low complexity supervised machine learning models are developed based exclusively on the low-order features and achieve an average accuracy among the developed models above 98%. The designed methodology involves examining ZigBee over-the-air data for artificial jamming and SDR jamming of ZigBee signals transmitted from SDR and commercial (XBee) sources. This approach expands